Novel Therapy Approaches in β-Thalassemia Syndromes — A Role of Genetic Modifiers
نویسندگان
چکیده
The β-thalassemia syndromes are heterogeneous autosomal recessive hereditary disorders, caused by alterations in the HBB gene and characterized by absent or reduced β-globin chain synthesis. The β-thalassemia phenotypes are variable, ranging from severe, transfusion-dependent thalassemia major to mild, asymptomatic thalassemia trait. This interpatient clinical variability has swayed researchers toward identifying genetic modifiers for these disorders. Primary modifiers refer to type of alterations affecting β-globin gene. Secondary modifiers include variations in genes affecting α/β-globin chain equilibrium, such as genes involved in the γ-globin gene expression and genes affecting the amount and stability of α-globin chains. Tertiary modifiers are gene variations affecting the phenotype with regard to the complications caused by β-thalassemia syndromes. A role of secondary genetic modifiers in ameliorating the clinical phenotype has been observed. Secondary genetic modifiers are the most common targets for modern therapy and could be located within αand γ-globin genes or outside globin gene cluster. The most potent secondary modifier genes are γ-globin genes. Production of fetal hemoglobin (HbF) trough adulthood ameliorates the severity of β-thalassemia phenotype. Large family and genome-wide association studies have shown that regions outside of the β-globin gene cluster are also implicated in γ-globin gene expression regulation. HBS1-MYB intragenic region and BCL11A gene have been particularly studied. Variants within these loci, along with γ-globin gene variants, account for approximately 50% of the HbF level variation, suggesting that additional factors are involved (transcription regulators (KLF1), regulators of α-globin chain stability (AHSP), epigenetic regulators (FoP)). Until recently a definitive cure for β-thalassemia could be achieved with bone marrow transplantation. However, it is available for less than 30% of the patients and bears a significant risk of morbidity and mortality. Alternative strategies, such as gene © 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. therapy and development of induced pluripotent stem cells (iPSCs) have been explored. The targets for gene therapy are hematopoietic stem cells, which are harvested from patient bone marrow or peripheral blood, purified by immunoselec‐ tion, transduced by “therapeutic gene” aimed at correcting the effect of defective βglobin gene, and returned to the patient. Various types of vectors have been considered for gene transfer, including non viral (tRNK and ribozymes) and viral (retroviral and lentiviral vectors). In the past few years, iPSCs emerged as an interesting candidate for gene transfer. The feature that makes these cells appealing in the field of gene therapy is their susceptibility to gene correction by homologous recombination. Therapy protocols based on molecular basis of β-thalassemia are the best example of novel approaches in disease treatment.
منابع مشابه
Transfusion Related Adverse Effects on Beta-Thalassemia Major and New Therapeutic Approaches: A Review Study
Thalassemia is one of the most common genetic disorders, worldwide.Beta-Thalassemia Major (BTM) is the most severe type, which reduces lifeexpectancy and quality of life. In this study, we searched the related keywords to subject from 1996-2019 in the Medline and Web of Science databases, therefore found 250 articles. Moreover, we categorized them into the studies on blood transfusions in...
متن کاملRecent trends in the gene therapy of β-thalassemia
The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in ...
متن کاملTherapeutic approaches in patients with β-thalassemia
Beta-thalassemia (β-thal) is a congenital hemoglobinopathy explained by a decreased level (β+) or absence (βο) of β-globin gene expression. Microcytic hypochromic anemia and various clinical symptoms comprising severe anemia to clinically nonsymptomatic features. Treatment with an ordered blood transfusion and iron chelator agents can decrease transfusion iron overload that causes normal matura...
متن کاملRecent trends for novel options in experimental biological therapy of β-thalassemia.
INTRODUCTION β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to low or absent production of adult hemoglobin. Achievements have been recently obtained on innovative therapeutic strategies for β-thalassemias, based on studies focusing on the transcriptional regulation of the γ-globin genes, epigenetic mechanisms governing erythroid differentiation, gene therapy an...
متن کاملTransfusion-Transmitted Viruses in Individuals with β Thalassemia Major at Northeastern Iran, a Retrospective Sero-Epidemiological Survey
Background: Thalassemia syndromes are the most common genetic disorders in the world. They happen due to genetic defects in process of haemoglobin synthesis, and would be classified to many groups mainly α and β, based on the kind of defect. Anemia is the main clinical manifestation of this phenotype of disorder. In order to correct the chronic anemia in thalassaemic individuals, they may need ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017